Search Results

Documents authored by Tassi, Enrico


Document
System Description
Hierarchy Builder: Algebraic hierarchies Made Easy in Coq with Elpi (System Description)

Authors: Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
It is nowadays customary to organize libraries of machine checked proofs around hierarchies of algebraic structures. One influential example is the Mathematical Components library on top of which the long and intricate proof of the Odd Order Theorem could be fully formalized. Still, building algebraic hierarchies in a proof assistant such as Coq requires a lot of manual labor and often a deep expertise in the internals of the prover. Moreover, according to our experience, making a hierarchy evolve without causing breakage in client code is equally tricky: even a simple refactoring such as splitting a structure into two simpler ones is hard to get right. In this paper we describe HB, a high level language to build hierarchies of algebraic structures and to make these hierarchies evolve without breaking user code. The key concepts are the ones of factory, builder and abbreviation that let the hierarchy developer describe an actual interface for their library. Behind that interface the developer can provide appropriate code to ensure backward compatibility. We implement the HB language in the hierarchy-builder addon for the Coq system using the Elpi extension language.

Cite as

Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. Hierarchy Builder: Algebraic hierarchies Made Easy in Coq with Elpi (System Description). In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 34:1-34:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.FSCD.2020.34,
  author =	{Cohen, Cyril and Sakaguchi, Kazuhiko and Tassi, Enrico},
  title =	{{Hierarchy Builder: Algebraic hierarchies Made Easy in Coq with Elpi}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{34:1--34:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.34},
  URN =		{urn:nbn:de:0030-drops-123562},
  doi =		{10.4230/LIPIcs.FSCD.2020.34},
  annote =	{Keywords: Algebraic Hierarchy, Packed Classes, Coq, Elpi, Metaprogramming, \lambdaProlog}
}
Document
Deriving Proved Equality Tests in Coq-Elpi: Stronger Induction Principles for Containers in Coq

Authors: Enrico Tassi

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
We describe a procedure to derive equality tests and their correctness proofs from inductive type declarations in Coq. Programs and proofs are derived compositionally, reusing code and proofs derived previously. The key steps are two. First, we design appropriate induction principles for data types defined using parametric containers. Second, we develop a technique to work around the modularity limitations imposed by the purely syntactic termination check Coq performs on recursive proofs. The unary parametricity translation of inductive data types turns out to be the key to both steps. Last but not least, we provide an implementation of the procedure for the Coq proof assistant based on the Elpi [Dunchev et al., 2015] extension language.

Cite as

Enrico Tassi. Deriving Proved Equality Tests in Coq-Elpi: Stronger Induction Principles for Containers in Coq. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{tassi:LIPIcs.ITP.2019.29,
  author =	{Tassi, Enrico},
  title =	{{Deriving Proved Equality Tests in Coq-Elpi: Stronger Induction Principles for Containers in Coq}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.29},
  URN =		{urn:nbn:de:0030-drops-110841},
  doi =		{10.4230/LIPIcs.ITP.2019.29},
  annote =	{Keywords: Coq, Containers, Induction, Equality test, Parametricity translation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail